

Noise Filtering with basic Labview Functions

László Balogh laszlo.balogh@prodsp.hu BudLUG Reboot, 2023-06-15

Content

- Aim
- Manual Coding
 - Moving Average
 - Exponential Filter
- Built-in Features
- Order Estimation
- Multichannel Filtering

Aim

• Noise filtering for DAQ

Assumptions

- only PC platform
- 1 or more channel
- time domain requirements

Toolset

Moving Average

• Straightforward implementations

Exponential Filter

• Extremely fast

 $egin{aligned} s_0 &= x_0 \ s_t &= lpha x_t + (1-lpha) s_{t-1}, \quad t>0 \end{aligned}$ where lpha is the smoothing factor, and 0<lpha<1.

Which One?

The **Butterworth filter** is a type of signal processing filter designed to have a frequency response that is as flat as possible in the passband.

Chebyshev filters are analog or digital filters that have a steeper roll-off than Butterworth filters, and have either passband ripple (type I) or stopband ripple (type II).

An **elliptic filter** (also known as a Cauer filter) is a signal processing filter with equalized ripple (equiripple) behavior in both the passband and the stopband.

Bessel filter is a type of analog linear filter with a maximally flat group/phase delay (maximally linear phase response), which preserves the wave shape of filtered signals in the passband.

<u> </u>		1000,	<u>h.</u>	
Butterworth	Chebyshev	Inv Chebyshev	Elliptic	Bessel
			And.	
Equi-Ripple LP	Equi-Ripple HP	Equi-Ripple BP	Equi-Ripple BS	

Special Filter - Zero Phase

• only for offline

Special Filter - Savitzky Golay

- convolution
- polynomial fitting (LS)

- Derivative
- Integral

Median Filter

• Non-linear

Samples	seed				Median Noisy P	Filtered ulse	Pulse	\sim
Amplitude	Amplitude (est)	6- 5- 4-		W	M	MAN		
4	3.97	<u>म</u> 3-		1	VWV	1. I MAY		
Width (samples)	Width (est)	-2 plitte				1	5	
44	44.3	₹ 1-M	LUMM	IM			MAL	
Delay (samples)	Delay (est)	0-	MAN WANT	AT V			MAM4	
64	63.44	-1-	· 4 ·	1			.1	
		-2-1	20 40	60 Tir	80 me	100	120	140

Testing

Key Performance Indicator

- Speed
- Memory Usage

Moving Average - Manual Implementation

Profile Data

	VI Time	Sub VIs Time	Total Time	# Runs	Average	Shortest	Longest	Diagram	Display	Draw	Tracking	Locals	Avg Bytes	
subSigGeneratorBlock.vi	5726	209962	215689	50	115	68	908	5726	0	0	0	1	1618.30k	
ex_GenAddAttribs.vi	2888	848	3735	50	58	42	192	2845	0	0	0	42	4.55k	
ex_SetAllExpressAttribs.vi	504	0	504	50	10	8	24	504	0	0	0	0	4.45k	8
ex_SetExpAttribsAndT0.vi	328	504	832	50	7	5	28	328	0	0	0	0	4.07k	10
Nearest Frequency for Block.vi	93	47	140	50	2	1	3	93	0	0	0	0	6.40k	
sub2ShouldUseDefSigName.vi	57	0	57	1	57	57	57	57	0	0	0	0	3.49k	
subShouldUseDefSigName.vi	49	57	106	1	49	49	49	49	0	0	0	0	2.57k	
Nearest Freq in Int Cycles.vi	47	0	47	50	1	1	2	47	0	0	0	0	4.40k	3
ex_CorrectErrorChain.vi	42	0	42	50	1	1	2	42	0	0	0	0	5.55k	
subGetSignalName.vi	27	0	27	1	27	27	27	27	0	0	0	0	4.77k	10
Waveform Array To Dynamic.vi	15	0	15	50	0	0	1	15	0	0	0	0	2.05k	
Dynamic To Waveform Array.vi	14	0	14	50	0	0	1	14	0	0	0	0	2.05k	
Clear Errors.vi	0	0	0	0	0	0	0	0	0	0	0	0	0.00k	
DU64_U32AddWithOverflow.vi	0	0	0	0	0	0	0	0	0	0	0	0	0.00k	
DU64_U32SubtractWithBorrow.vi	0	0	0	0	0	0	0	0	0	0	0	0	0.00k	
Morpho Test.vi	0	0	0	0	0	0	0	0	0	0	0	0	0.00k	
Timestamp Add.vi	0	0	0	0	0	0	0	0	0	0	0	0	0.00k	
Timestamp Subtract.vi	0	0	0	0	0	0	0	0	0	0	0	0	0.00k	0
subInternalTiming.vi	0	0	0	0	0	0	0	0	0	0	0	0	0.00k	
Moving Average.lvlib:MA Core.vi	4047247	0	40472471	500000		2	18812	16219413	2582841	2167021	0	0	01000	
Moving Average.lvlib:Main.vi	1290279	40472471	41762750	50	25806	21190	47516	1052893	32594	203222	1571	0	4792.50k	
Moving Average.lvlib:Test Main.vi	1200548	41981304	43181852	1	12000 10	1200548	1200548	24972	671518	225059	279000	0		1
Moving Average.lvlib:MA Init.vi	7	0	7	1	7	7	7	7	0	0	0	0	2.84k	
[Test Main.vi]	2714	14	2728	50	54	43	186	2714	0	0	0	0	2.99k	
[Test Main.vi]	130	215689	215819	50	3	2	4	130	0	0	0	0	3.02k	
NI_AALBase.lvlib:Uniform White Noise.vi	168406	0	168406	50	3368	1415	18393	168406	0	0	0	0	2.25k	
NL AAL Rase With Sine Wave vi	34397	0	34397	50	688	344	16432	34397	0	0	0	0	2 326	

Express VI

OK

Cancel

Help

	Configure Filter [Filter]	
Frequency Noise amplitude Simulate Signal Signal Filtered Signal Waveform Chart EIII monomodel Mareform Chart	Filtering Type Lowpass Filter Specifications Cutoff Frequency (Hz) 1000 High cutoff frequency (Hz) 400 Finite impulse response (FIR) filter Taps 29 Infinite impulse response (IIR) filter Topology Butterworth Order	Input Signal 100-
 Performance OK Cannot tune filter in run-time 		View Mode Signals Show as spectrum Transfer function Scale Mode Magnitude in dB

Basic Implementation

- Fast: 436 us / 1000 samples
- Small Memory Footprint: 326 kByte

Basic Implementation - Problem

Basic Implementation - Solution

init/cont (init: F)

Multiple Signals

Multiple Signals - Problem

NI nomenclature:

• I.C. : Initial Condition

Extra 1 - Simple Spectrum Calculation

Extra 2 - Moving Average - Manual Implementation

• For long measurements better speed

Conclusions

• Express VI: good solution for quick measurement

• 1 channel: broader function selection, rich API

• N channel: not all the functions are available, little bit more programming

Next steps:

- Digital Filter Design Toolkit
- Advanced Signal Processing Toolkit