gRPC

A shorter way to Microservice Architecture?

Balazs Nagy

Senior Field Applications Engineer at NI
CLA, CLED, CTD

balazs.nagy@ni.com

Microservice Architecture — Intro
gRPC — Intro

gRPC — As architectural building block
gRPC — Use cases

gRPC — Use in LabVIEW

ni.com

Microservice Architecture — Intro

I1| ni.com
When you outgrow your monolithic architecture

Sometimes an application can outgrow its monolithic architecture and become an obstacle to
rapid, frequent and reliable software delivery.

This typically happens when the application becomes large and complex and is developed by
many teams. For example, its deployment pipeline become a bottleneck.

When this occurs, you should consider migrating to microservices.

Monolithic architecture Microservice architecture
i System operations
i operationAf) v
! | operationB() i N
. . i System operations
Application ! | | operationag
=] or il

https://microservices.io/

__

https://microservices.io/

n| ni.com
What are microservices?

Microservices - also known as the microservice
architecture - is an architectural style that structures an

application as a collection of services that are:

REST AP Account
*Independently deployable w1 | GATEWAY e

*Loosely coupled
*Organized around business capabilities Mabile app
*Owned by a small team

The microservice architecture enables an organization to
deliver large, complex applications rapidly, frequently, L
reliably and sustainably - a necessity for competing and
winning in today’s world.

Inventory
Service

Inventory
o8
Shipping
o8

Storefront
WabApp

Browsear

https://microservices.io/

https://microservices.io/patterns/microservices.html
https://microservices.io/patterns/microservices.html
https://microservices.io/post/architecture/2022/05/04/microservice-architecture-essentials-deployability.html
https://microservices.io/post/architecture/2023/03/28/microservice-architecture-essentials-loose-coupling.html
https://microservices.io/

gRPC — Intro

ni.com

‘GRPC Overview

A high performance, open-source universal RPC framework

gRPC is a Google-invented, open-source,
remote procedure technology built for cloud
process communication.

It offers many advantages such as:
OS-Agnostic
Language Agnostic

Transport Layer Agnostic (ethernet, PCle,
Reflective Memary, etc.)

High Bandwidth Streaming Enabled
Secure (HTTP2)

Open Source

Can Directly Call Drivers or Application SW
Works with native error handling

https://grpc.io/docs/what-is-grpc/introduction/

https://grpc.io/docs/what-is-grpc/introduction/

ni.com ‘g’RPC

Key Feature - Interoperability

gRPC
. Stub
Communicate across

processes or systems

Client and server can be on &
different platforms and
written in different languages

Supported Languages

C# - LabVIEW C- service L
C++ - Node

Dart - Objective-C
Go - PHP

Java - Python
Kotlin - Ruby

gRPC Server e Client

rr*:"‘?sxiﬂ'::rr|5:&{5‘!

https://grpc.io/docs/languages/

ni.com 5 R PC

Key Feature - Cross-language

ot Python Class
.proto file compiles to language
of choice for client/server stubs, java_out (A
message definitions, etc. — Java Class
. protoc | proiocol - 7
) _) -proto File Compiler - e ~
.proto file compiles to different PP_out
: C++ Class
languages for client(s) and L)
server j .
Go Class
A _/

https://www.grpcgenerator.com/

https://www.grpcgenerator.com/

ni.com
n' Proto File

What iIs a Proto File?

The ProtoBuf interface describes the structure of the data to be sent. Payload
structures are defined as “messages” in a .proto file.

rpc >ayHello fHelloRequest) returns (HelloResponse); _

string greeting = 1;

Im9553ge HelloResponse]{

string reply = 1;

h

Review the gRPC Core concepts, architecture and lifecycle document here [https://grpc.io/docs/what-is-
grpc/core-concepts/] for more details.

https://grpc.io/docs/what-is-grpc/core-concepts/
https://grpc.io/docs/what-is-grpc/core-concepts/

High-Level Workflow of gRPC

Server(s)

Contains all the details about the
commands/queries/messages
(called methods and messages)

Transport layer

gRPC

Al
- s

Client(s)

Services
Methods
Request + Response

e

Auto-creates a full
client API ready for that
programming language

gRPC — As architectural building
block

gRPC — Use cases

gRPC — As architectural building block

Frontend
| WebUI | LabVIEWAPI|C++APletc.
gRPC Clients
Backend gRPC Server gRPC Server
Runtime Test Application Server
Engine
A
Service . Server
Runtime Engine
\ 4
Driver

INTERNAL - NI CONFIDENTIAL

gRPC — Use cases

gRPC — Applications Examples

Workflow 1: Allow to control test execution and pass data
through LabVIEW between Tester and Client machine.

Workflow 2: Allow to make driver calls remotely.

Instrumentation

8
3

o’ Driver {Q}

t ... '
+ Python
LabVIEW tand Server) BE Client

—
=
==

Instrumentation

Client PC

Customer
Code

Driver
O’_

(Ol crenee
L

{0} Customer

= Code

L]

Client

Workflow 3: Allow to remotely control App
Software

=

Instrumentation
==

$

OJ’ Driver

t

Veristand
,! L d Server

I:li Client PC
1
(el

Customer
Code

Workflow 4: Allow to remotely control
instrumentation from App Software

(O cienee
t

E

FlexLogger

—
=
==

Instrumentation

o bammmnd Server

Workflow 5: Web-based instrument control

Web
Browser

M gRPC — Detailed Applications Examples

LabVIEW Server Support

Examples:
Remote interface for LV
Application

GRPC Remote
Interface

Benefits:

* Easily accessible through
e.g. Python

e Will open the door for
fully remote applications.

Customized GUI
+
Server

Examples:
) gRPC Server is added to the
Data Engine Datalogger to expose a set
of functionality to users.
Benefits:
Sample LV Ul e Light-weight client.
Ul Plugins gRPC * Flexibility due to range
amnt‘l of supported 0S and
Languages.
Custom Developed Ul « Quick timeline turnaround
ni.com Custom gRPC due to minimal rework
code Client

Device Driver Support
" BN
/[\

Examples:
Multiple instruments being
controlled by a single test

machine
= nn .
Benefits:
Lf/ = \:g e No drivers installed on test
machine

Can integrate NI instruments
without rework

3 T

= n

0

Examples:
Different groups are sharing
the same equipment in a lab.

1])
: .II | Benefits:
- e Single Driver install on
Lf// \\Eg server
* Groups can use different
languages and 0S’s

MMAL

ni.com

s gRPC App. Ex. 1: NI gRPC Device Server and Client APIs

Use test systems from anywhere, with any language, on any OS

OS, Language Agnostic

Server

Benefits

Remotely control
NI Hardware and
Software

Minimize time to
first
measurement

Leverage existing
workflows

Avoid driver
installation on
client

https://github.com/ni/grpc-device

NI gRPC Device Server and Client APIs

NI gRPC Device GitHub

[.proto Files] [gRPC Device Server]

/ Client Machine \

.proto Files

Driver Machine \

gRPC Device Server]

\ 4
;{ gRPC Web l/ NI-SCOPE] [NI-SWITCH][]
Request

/

A

gRPC Tool

\L\

Control
Application

NG /

)

-

NI CONFIDENTIAL

=\ (=

NI Provided Components for gRPC T mtiznerm
Device Server and Client APIs fo} e

[
gRPC Server

L—)—E

The gRPC Server is installed on the machine directly connected to the test instrumentation.

The gRPC Server provides remote clients with a link to the actual instrument drivers installed on the
tester.

A single gRPC Server can support multiple instrument drivers.

Remote gRPC API for each supported driver

NI will provide a gRPC .proto file that describes the API client machines can use in order to interact
with their instrumentation. This API will mirror the C API of the driver.

The .proto file can be used to generate the remote API into any programming language you prefer.

Ex.) The .proto file for the NI Scope driver will allow you to use the remote NI Scope API in C#, Python, Go, and
many other languages.

Basic instrument discovery capability

User on client side will be able to programmatically query for instruments connected to the gRPC
Server.

Current Support

- NI-DAQmx (in-progress) FUture SUpport
- NI-DCPower

- NI-Digital Patter . RF Drivers

- NI-DMM . NI-XNet

- NI-FGEN - NI VRTS

- NI-SCOPE

- NI-SWITCH

- NI-Sync

- NI-TCIk

NI CONFIDENTIAL

ni.com
NI Measuremen tLink, NI InstrumentStudio, NI TestStand

-GRPC+—]

o+
LabVIEW @

> V\
|"|i: W\A" @ﬁ

gRPC — Use In LabVIEW

ni.com

nl

Custom LV gRPC Server: Development Workflow

Download and Install the gRPC tools for LabVIEW: https://github.com/ni/grpc-labview
Define Messages for communication between Sever and Client

Create and Validate Protofile

Generate LV gRPC Server Interface

Generate Client Interface

Integrate LV gRPC Server Interface into existing LabVIEW Codebase

Integrate Client Interface into Client Codebase

N o ok owNRE

https://github.com/ni/grpc-labview

Where to get gRPC for LabVIEW?

gRPC Support for LabVIEW by NI - Toolkit for LabVIEW Download

Pull requests Issues Codespaces Marketplace Explore

gRPC WVisit Homepage
Version Versions
Released Now 09, 2021
Fublished by
Publisher W
= MIT License .
LanviEw version LabVIEW>=19.0

Featured in
Operating System

Project links ¥ Postan ides

M Post a Resource

purp

You can either use
implement a gRPC

d to implement a generic server wia gPRG of use the implementation as a paltem 1o

The project supports Windows, Linux, and Linux RT

Releases

Packages

https://qgithub.com/ni/grpc-labview https://www.vipm.io/package/ni lib arpc labview/

https://github.com/ni/grpc-labview
https://www.vipm.io/package/ni_lib_grpc_labview/

nl

LabVIEW Server / Client code
generation based on .proto file with
Scripting Tool

B 9RPC Demo huproj * - Project Explorer - m] X
File Edit View Project Operate Tools Window Help
[EEIE IEFEREEY

ltems Files

Project ltems
B @. Project: gRPC Demo.lvproj

& B My Computer

= [Generated_server

[Generated_server.vlib
=+ [} Custom_Visvlib

[Controls

[SubVis

_Acquisition_Vlvi
- @ Generated_server.lvclass

b " Generated_server.ctl

[Accessors

= [RPC Messages

End RPC Call
P_AcquistionRequest
P_AcquistionResponse
P_DataRequest_Multi
P_DataRequest_Single
P_ErrorQut
P_MultiDataResponse
P_SingleDataRespense
P_StopRequest

P_StopResponse
PC Methods
P_Cont_Acq_Measure_Multi_Data
P_Cont_Acq_Measure_Single_Data
P_Cont_Acq Start_Acquisition
g P_Cont_Acq_Stop_Acquisition
[Server API
- ServertypeDefs
[# Mainvi
- %' Dependencies
-'% Build Specifications

oe

-

falalapetafalafalafalatal

https://github.com/ni/grpc-labview

ni.com

n Client Serv:

File Edit View Project Operate Tools Window Help

pport.lvproj * - Project Explorer

EEEIE IEETEREYEES

lterns Files

Project Iterns

2 gRPC Scripting Tools.vlib:Mainwi Front P, — [m] x
File Edit View Project Operate Tools Window H

Project: Client Server Suppert.lvproj
& B My Computer

g Servers

[Clients

£ [3 gRPC Scripting Tools.Ivlib
i-[J Class API

]-g Library API

i [Project AP

t- [Top Level API

a0 VIAPI

i [TypeDefs

H- [Proto Parser 4P|

+ [Animation AP|

i [Error Handling

A

- @ Open gRPC Server-Client Code Generation Viwi
i %5 Dependencies

- ‘é Build Specifications

o & 11 | 15pt Application Font <, 9

Proto File Path

~

Target Project

Target Name

Generated Library Name

Generated Library Suffix ("_server" /"_client" will be added by default)

Generate
|gRPC Server | v

£ >

Client Server Support.lvproj/My Computer| <

https://github.com/ni/grpc-labview

I1| ni.com

LV Server: Main VI

=] [[2] <Server Stop>: User Event vp}—————

To implement the main functionality. T3 Reg bverts 5 2 Server Stop =
ey [Jser Event v
EGREU:R - g !@I
Bz User Event FGW.vi

TSToRleeererly [Terminate All UE Ref

(L3
FEl

Server Key File (key)

il
Sir:er Certificate File (.crt) IM}*‘ il Datal — Enable Async Mode
= =

Server Address

WME?% -

ERVER SERVER SERVER
SEIEE!TER START | STOP
STATE ERVER
Enable the generic event if you would like to Listening Port
use a single event for capturing all messages.

This would be useful if you are planning to
implement your own dispatcher logic.

Kindly note that enabling the generic event
would not generate the individual events.

ni.com

1
LV Server: Method VI

To implement the functionality when a gRPC client makes a request.
e.g. send a start acqusition request to the suitable thread, send response the client.

1 Mo Error Vt
Ja[[2] <P_Cent_Acq Start_Acquisition gRPC UE>: User Event whf 1 I
[0] Timeout
S Tt = [1] «Server Stop>: User Event
W[o [[2] <Server Internal State UE>: User Event
 [31 <P_Cont_Acq Start Acquisition gRPC UE>: User Event
[4] <P_Cent_Acq_Start_Acquisition Internal UE>: User Event
SeRveR
o
%4 RegEvents] message [Vl Launched &y
H H ge |Vl Launche:
b UserEvent v prvneroeeef¥ s | appended path message
User Event = status |- P1mHT37H status
|.orud5 [P _Cont_Acq_Start_Acquisition qRPC UE ey User Event ¥ F* | code error.erCode
et | P_Cont_Acq_Start_Acquisition Internal UE esem=sp User Event source erroremessage
name or relative path
% Custom_VIs\Continous_Async_Acquisition_Vl.vi
I = e — beccp=at | |error Debug
[oRPCid]—feer) |
5 EA S a
- —)

I1| ni.com

Additional References

NI gRPC-Device Repo
https://qgithub.com/ni/grpc-device

gRPC Repo
https://github.com/grpc/grpc

NI gRPC Device Wiki:
https://github.com/ni/grpc-device/wiki

NI Device gRPC Server and Client API Wiki:
https://github.com/ni/grpc-device/wiki

gRPC Overview
https://grpc.io/

Proto language guide
https://developers.google.com/protocol-buffers/docs/proto3

Getting started with GoogleTest
http://google.github.io/googletest/

https://github.com/ni/grpc-device
https://github.com/grpc/grpc
https://github.com/ni/grpc-device
https://github.com/ni/grpc-device/wiki
https://github.com/ni/grpc-device/wiki
https://grpc.io/
https://developers.google.com/protocol-buffers/docs/proto3

Thank you!

Questions?

	Default Section
	Slide 1: gRPC
	Slide 2
	Slide 3: Microservice Architecture – Intro
	Slide 4: When you outgrow your monolithic architecture
	Slide 5: What are microservices?
	Slide 6: gRPC – Intro
	Slide 7: Overview
	Slide 9: Key Feature - Interoperability
	Slide 10: Key Feature - Cross-language
	Slide 11: What is a Proto File?
	Slide 12: High-Level Workflow of gRPC
	Slide 13: gRPC – As architectural building block
	Slide 14: gRPC – As architectural building block
	Slide 15: gRPC – Use cases
	Slide 16: gRPC – Applications Examples
	Slide 17
	Slide 19: gRPC App. Ex. 1: NI gRPC Device Server and Client APIs
	Slide 20: NI gRPC Device Server and Client APIs
	Slide 21: NI Provided Components for gRPC Device Server and Client APIs
	Slide 22: Current Support
	Slide 27: gRPC App. Ex. 2: Plug-ins Shared Between Applications
	Slide 28: gRPC – Use in LabVIEW
	Slide 29: Custom LV gRPC Server: Development Workflow
	Slide 31: Where to get gRPC for LabVIEW?
	Slide 32: LabVIEW Server / Client code generation based on .proto file with Scripting Tool
	Slide 33: LV Server: Main VI
	Slide 35: LV Server: Method VI
	Slide 37: Additional References
	Slide 38: Thank you!

